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Abstract. The interband multi-photon absorption spectrum from a semiconductor superlattice
induced by an intense optical wave in the presence of uniform magnetic and electric fields
is analysed theoretically. The oscillating electric field of the optical wave and the uniform
electric and magnetic fields are all directed perpendicular to the heteroplanes. The explicit
dependences of the coefficient of the multi-photon absorption on the frequency and magnitude
of the oscillating electric field, on the superlattice parameters and on the magnitudes of the
uniform electric and magnetic fields are obtained. The uniform electric field is assumed to
be sufficiently strong to provide Wannier–Stark localization of the carriers. The electron–hole
cyclotron frequency and the frequency of the Stark oscillations are taken to be commensurate
with their ratio being rational. It is shown that, under these conditions and in contrast to one-
photon spectra, an enhancement of the series of resonances could arise. It is also shown that the
form of the spectrum depends on the relationship between the cyclotron and Stark frequencies
and on the number of photons involved.

1. Introduction

During the last decade, the properties of semiconductor superlattices (SL) has attracted
much attention. One typical example is the heterostructure formed by alternating layers
of GaAs and AlAs semiconductors. The energy spectrum of an electron associated with
the Oz-direction (the SL direction) normal to the heterolayers splits into an alternating
series of allowed and forbidden minibands. This miniband spectrum is superimposed on
the two-dimensional energy-band spectrum associated with the motion of the electrons in
the heteroplanes. The unique properties of such superlattices are caused by the combination
of both the localized and extended carrier states due to tunnelling through the barriers
separating the quantum wells.

The optical response of SLs reflects these unique properties. This is especially the case
with optical experiments involving interband optical absorption in the presence of external
uniform electric (E) and magnetic (B) fields. With E parallel to Oz, the finite quasi-
classical motion of an electron of chargee along Oz has a frequencyωE = eEa/h̄ where
a is the period of the SL [1, 2]. This leads to a discrete energy spectrum consisting of
equidistant Stark levels separated by an amount ¯hωE whilst the electron can be localized
within one period by the available strong electric field. The influence of the Wannier–Stark
quantization on the optical response of a superlattice has been investigated previously both
theoretically [3–5] and experimentally [6–9]. We note that the localized electron states have
a quasi-2D character.
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The uniform magnetic fieldB quantizes the electron motion to the heteroplanes. The
relevant energy spectrum consists of a sequence of equidistant discrete Landau levels
separated by an amount ¯hωB whereωB = eB/m andm is the in-plane effective mass. The
interband optical absorption spectrum consists of a series of continuous absorption bands
associated with the Landau levels [10, 11]. In this case, we have to deal with the quasi-1D
states. Of interest is the particular geometry when the applied magnetic and electric fields
are parallel to Oz. As the magnetic and electric fields localize the electrons within and
perpendicular to the heteroplanes respectively, the dimensions of the electron orbits tend to
zero. The overall energy spectrum is discrete and the superlattice optical response consists
of δ-function-type resonances which are favourable for experimental observation.

The study of interband magneto-electro-absorption in superlattices commenced about
five years ago [12]. Of particular interest is a remarkable effect first observed by Claroet
al [13]. Under the condition of commensurability between the StarkωE and cyclotronωB

frequencies, they predicted a drastic enhancement of the absorption spectrum. The reason
for this is that the Landau levels associated with different Stark levels cross. However,
if the Coulomb interaction between the electrons and holes and the mixing between light-
and heavy-hole states from the valence band are taken into account, different Landau levels
are shown to anticross [14, 15]. The experimental data [14] and theoretical results [15] are
given for the Faraday configuration of the optical wave.

It should be noted that most of the previous theoretical papers on this topic are based on
either numerical- or variational-type calculations of one-photon effects induced by a weak
optical wave. The numerical character of these calculations is a consequence of using a real
superlattice potential which consists of a large number of rectangular wells separated by
barriers of finite width and height. However, an analytical approach to the calculation of the
interband optical transitions in the superlattice has been developed previously [13, 16, 17] in
which the superlattice potential barriers are modelled by barriers which areδ-type functions
[16, 17]. With this model, explicit analytical expressions for the coefficient of one-photon
electro- [16], magneto- [17] and electro-magneto-absorption [13] were obtained.

Very recently, much attention has focused on multi-photon effects in semiconductor
superlattices induced by an intense optical wave [18]. Under these circumstances, the non-
linear response gives additional information about the properties of the heterostructures.
In particular, it was noted [14] that the enhancement of the electro-magneto-absorption
of a weak wave, which is caused by the crossing of Landau levels associated with the
different inter-well Stark electron–hole transitions [13], could not be tested. This is because,
under the localization condition, only vertical inter-well one-photon Stark transitions can
occur. Meanwhile, an analytical approach developed originally in [16, 17] has been extended
to multi-photon effects. Thus explicit expressions for the coefficient of the multi-photon
interband magneto-absorption [19], 2D exciton absorption [20] and electro-absorption [21]
have been obtained.

The aim of this paper is to extend the approach given above in [19–21] to the calculation
of interband multi-photon absorption in a semiconductor superlattice subjected to both
external uniform electric and magnetic fields. The oscillating electric field of the intense
optical wave and the uniform electric and magnetic fields are all directed along Oz. The
effective mass approximation and quasi-energetic approach will be used. The superlattice
is again modelled by a limiting form of the Kronig–Penney potential consisting of a
periodic chain ofδ-function-type barriers. The explicit dependences of the coefficient of
the multiphoton absorption on the frequency and magnitude of the oscillating electric field,
on the superlattice parameters and on the magnitudes of the uniform electric and magnetic
fields will be obtained. In particular, it should be emphasized that here we concentrate on
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the multi-photon component in the absorption spectra caused by the intense optical wave.
The exciton interaction, the mixing between light- and heavy-hole states and the effects
of different superlattice sub-bands are excluded on account of the complexities which they
introduce into the analysis.

Our main concern is the magnitude of the uniform electric field and the relationship
between the cyclotronωB and StarkωE frequencies. The uniform electric field is regarded
as having sufficient strength to provide Wannier–Stark localization of the carriers. The
electron–hole cyclotron frequency and the frequency of the Stark oscillations are taken to
be commensurate such that their ratio is rational. It will be shown that the last condition leads
to an enhancement of the series of discrete resonances within the multi-photon absorption
spectrum. This is due to the fact that, in contrast to the one-photon spectrum, intense non-
vertical multi-photon Stark transitions occur. Thus the predictions given in [13] could be
tested in principle. The localization condition simplifies the absorption spectrum compared
to the case of a weak uniform electric field. The form of the multi-photon absorption
spectrum depends upon the number of photons involved.

2. Quasi-energetic states of the carriers

Let us consider an electron in a semiconductor superlattice which consists of a large
number N ′ of periods a, in the presence of an oscillating electric fieldηF0 cosωt of
angular frequencyω, magnitudeF0, polarization (unit) vectorη, an external uniform electric
field E and an uniform magnetic fieldB. Assuming that the external fields, including the
superlattice potential, satisfy the effective mass approximation, the equation for the envelope
wavefunction9 describing a particle at a positionr in a simple band with effective mass
m is given by{

1

2m
(−ih̄∇ − 1

2e[B · r])2 + V (z) − (E + ηF0 cosωt) · r

}
9(r, t) = ih̄

∂9(r, t)

∂t
(2.1)

where the periodic superlattice potential formed by theδ-type barriers of powerα0 may be
written in the form

V (z) = α0

∑
s

δ(z − as) with V (z) = V (z + a) andα0 > 0 (s-integral).

If the electric and magnetic fields are directed along the SL direction such thatE, η,
B and Oz are all parallel, the solution to equation (2.1) is

9(r, t)e−E⊥t/h̄8⊥(ρ)ϕ(z, t) (2.2)

where8⊥(ρ) is the transverse wavefunction of an electron with energyE⊥ in the uniform
magnetic fieldB andϕ(z, t) obeys the equation

− h̄2

2m

∂2ϕ

∂z2
+ [V (z) − (E + F0 cosωt)]ϕ = ih̄

∂ϕ

∂t
. (2.3)

Equation (2.3) has been studied in detail in [21] from which we obtain

ϕ(z, t) = a
√

N ′

2π

∫ +π/a

−π/a

ψ[z, q(t, k)] exp

{
− i

h̄

∫ t

0
(E − ε̄(k) + ε[q(τ, k)]) dτ

− i

eE

∫ k

0
(ε̄(k′) − E + 1

2eEa) dk′
}

(2.4)

whereε(k) is the energy of the ground allowed miniband given by

ε(k) = b + 1
21(1 − coska) (2.5)
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with the lower boundary atε(0) = b and of width1, and whereψ(z, k) is the ground
miniband Bloch function of the electron in the superlattice having an average momentum ¯hk.
Also

q(t, k) = k + eF0

h̄ω
sinωt ε̄(k) = 1

T

∫ T

0
ε[q(τ, k)] dτ with T = 2π

ω
. (2.6)

Explicit expressions for the miniband parametersb, 1 and the Bloch functionsψ defined
by the effective massm, the period of the superlatticea and with barrier powerα0 are given
in [16, 17, 19–21] for the case of weak barrier penetration.

It is easy to see that the function (2.4) satisfies the conditions

ϕ(z, t) = e−iE t/h̄f (z, t) such thatf (z, t + T ) = f (z, t) andϕ(z, t + T ) = e−iET/h̄ϕ(z, t).

(2.7)

This means that the expression (2.4) is the quasi-energetic wave function for the Stark
energy levels [21] with quasi-energyEσ [22] given by

Eσ = eEa(σ + 1
2) + a

2π

∫ 2π/a

0
ε̄(k) dk whereσ = 0, ±1, ±2, ±3, . . . . (2.8)

The expression (2.4) is valid under the condition

ν = eEa

h̄ω
� 1. (2.9)

For example, ifh̄ω ≈ 1 eV, a ≈ 50 Å and E ≈ 107 V m−1, thenν ≈ 5 × 10−2. Taking
into account the periodicity of the Bloch function (namelyψ(z, k) = ψ(z, k + 2π/a)), it
may be expanded in a Fourier series in the form

ψ(z, q) = 1√
N ′

∑
µ

Qµ(z) eiqaµ. (2.10)

To obtain the function (2.4) and the quasi-energy (2.8) in explicit forms, we make the
assumption that, in the case of a real superlattice and in the presence of a real oscillating
field F0, the parameterβ is such that

β = eF0a

h̄ω
� 1. (2.11)

Thus if h̄ω ≈ 1 eV anda ≈ 50 Å as above and alsoF0 ≈ 5 × 107 V m−1, thenβ ≈ 0.25.
Under conditions (2.9) and (2.11) and using the expressions (2.4) for the wavefunctions,

then (2.7) and the quasi-energies (2.8) become [21]

fσ (z, t) =
∑

n

Qn−σ (z)(−1)nJn(χ) and Eσ = eEa(σ + 1
2) + b + 1

21 (2.12)

whereJn(χ) are Bessel functions with

χ = ζ

2ν
(1 − 1

4β2) = 1

2eEa
(1 − 1

4β2) (2.13)

and where

ζ = 1

h̄ω
� 1.

Since1 ∼ 0.1 eV, we haveζ ∼ 0.1.
It follows that, from the function given in (2.12), the degree of the localization of the

electrons is defined by the Bessel functionJn(χ). If χ � 1, thenJ0 = 1 andJn � 1
(n 6= 0) and the electron having an energyEσ is localized in the superlattice cell with index
s = −σ . The expression (2.13) forχ shows that localization increases with an increase in
the magnitudes of both the uniformE and oscillatingF0 electric fields.
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3. Coefficient of the interband multi-photon absorption

The outline of the derivation of the multi-photon absorption coefficient will be given below
but further details of the calculation can be found in [21]. We consider the interband
absorption as a transition of the electron–hole pair from the ground state to an excited state
in which an electron (e) is initially in the conduction ground miniband and a hole (h) is
initially in the valence miniband. The interband optical absorption essentially depends upon
the kinetic parameter�eh,lτ whereτ is the relaxation time of the electron momentum in
the conduction band and�eh,l is the frequency of thel-photon transition. This frequency
can be estimated from the approximation�eh,l ∼ ω/γ l whereω is the frequency of light
as before andγ (� 1) is the parameter defined in (3.6) below at2 = 0. Approximate
estimates for the parameters for the GaAs/GaAlAs superlattice system (namelyEg ∼ 1.5 eV,
a ∼ 50 Å, (1e + 1h) ∼ 0.1 eV andτ = 10−11 s) may be made. With an electric field
F0 ∼ 107 V m−1, the kinetic parameter is such that, for three-photon absorption(l = 3,
3h̄ω ∼ Eg) �eh,lτ ∼ 0.02. Under the condition�eh,lτ � 1 which is anticipated, the photo-
generated electrons do not accumulate in the conduction band due to relaxation processes,
which in turn leads to the interband absorption. Thus the one-band assumption becomes
valid. The ground state is then described by the function90(re, rh) = δ(re − rh) and the
excited state by the function

9(re, rh, t) = 9e(re, t)9h(rh, t). (3.1)

The electron function9e(re, t) is defined by expressions (2.2), (2.7), (2.12) and (2.13) with
the addition of subscripts ‘e’ to all parameters. Similarly, the hole function9h(r, t) can be
obtained from the electron function by replacing the subscript ‘e’ by the subscript ‘h’,σ by
σ ′, t by −t , e by −e and taking complex conjugates. Also, in the expression (2.12), the
electron Wannier functionQµ(ze) should be replaced by the hole function̄Q∗

µ′/(zh) with

Q̄µ = Q−µ.
The coefficient of the interband dipole transition under the oscillating electric field is

defined by the matrix element of the operator

P(t) = ih̄eF0pehz

m0Eg

cosωt (3.2)

wherepehz is the matrix element of the momentum operator between the amplitudes of the
Bloch functions of the electron and hole bands separated by the forbidden gapEg. The
matrix element of the operatorP(t) given in (3.2) between the wavefunctions90 and 9

given in (3.1) defines the transition rate. This, in turn, defines the coefficient of absorption
α in the general form [21]

α =
∑

l

αl

where

αl = 2πωh̄2e2|pehz|2
ε0cV m2

0n0E2
g

∑
e,h

|Al(ω)|2δ(lh̄ω − Eg − E⊥e − E⊥h − Eσ − Eσ ′) (3.3)

whereαl is the coefficient ofl-photon interband absorption,n0(ω) is the refractive index,
c is the speed of light,V = LxLyLz is the volume of crystal,6e,h is a sum over band states
andAl(ω) is the Fourier coefficient:

Al(ω) = ω

2π

∫ +π/ω

−π/ω

eilω cosωt

∫
δ(re − rh)8

∗
⊥e(ρe)8

∗
⊥h(ρh)f

∗
e (ze, t)f

∗
h (zh, t) dre drh dt.

(3.4)
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Using the integral representation for Bessel functions in the expression (2.12) and then
substituting (2.12) into (3.4), the form for the coefficientAl(ω) becomes

Al(ω) = √
LxLy8⊥(0)

1

2π

∫ +π

−π

exp

{
i

[
(σ − σ ′)2 − ζeh

2ν
(1 − 1

4β2) sin2

]}
Bl(2) d2

(3.5)

where8⊥(ρ) andρ = ρe − ρh is a function of the relative transverse motion

Bl(ω, 2) = 1

2
√

lπ
e−i 1

2 π(l−1)+ 1
2 l

(
1

2γ

)l−1

sin[−2lξ + 1
2lπ ] (3.6)

and where

2ξ(2) =
(

ζeh

l

)1/2 sin2

(cos2)1/2
and

1

γ 2(2)
= ζeh

4l
β2 cos2

such thatζeh = ζe + ζh � 1 andγ � 1 with ζeh given in (2.13) in which1 is the width of
the relevant electron or hole miniband.

The expressions (3.3), (3.5) and (3.6) define the coefficient of thel-photon interband
electro-absorption in the superlattice. The above expressions have a common character but
they are not related to any specific transverse states.

4. Results and discussion

4.1. General results

The wavefunctions8⊥(ρ) and energiesE⊥e,h for the Landau levels of the electron–hole pair
in the presence of a magnetic fieldB directed along Oz have the well known form [13, 16]

8⊥(0) = 1√
2πaB

E⊥e + E⊥h = E⊥N = h̄ωB(N + 1
2) ± (βe + βh)B

(N = 0, 1, 2, . . .) (4.1)

where

aB =
√

h̄

eB
ωB = eB

µ
and µ−1 = m−1

e + m−1
h

and whereβe,h are the effective Bohr magnetons. The longitudinal electron–hole energy
(2.13) is given by

Eσ + Eσ ′ = h̄ωEδ + be + bh + 1
21e + 1

21h (4.2)

where

ωE = eEa

h̄
and δ = σ − σ ′ = 0, ±1, ±2, . . . .

The sum in (3.3) is of the form∑
e,h

=
∑

N,σ,σ ′
= N ′ ∑

N,δ

. (4.3)

On substituting the expression (3.6) into (3.5), the coefficientAl(ω) can be expressed in
terms of Bessel functions. Substituting for8⊥(0) and (E⊥e + E⊥h) from (4.1), and for
(Eσ + Eσ ′) from (4.2) into (3.3) and using the summation rules (4.3), the result forαl is

αl(ω) = α0
el

4lπ

(
ζehβ

2

16l

)l−1

3l(ω) (4.4)

where

α0 = h̄2ωe2|pehz|2
4π2a2

Bε0cam2
0n0E2

g
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and where

3l(ω) =
∞∑

N=0

+∞∑
δ=−∞

|M(l)
δ |2δ(lh̄ω − Ēg − h̄ωEδ − h̄ωBN) (4.5)

with

Ēg = Eg + be + bh + 1
2(1e + 1h) + 1

2ωB ± (βe ± βh)B.

The matrix elements are as follows [21]:

(a) for the transitions involving an odd number of photons, such thatl = 2s + 1, with
s = 0, 1, 2, . . . we have

M
(l)
δ (ν, β) = 1

2s

s∑
j=0

(
s

j

)
Js−δ−2j (χeh) (4.6)

(b) for the transitions involving an even number of photons, such thatl = 2(s + 1) with
s = 0, 1, 2, . . . we have

M
(l)
δ (ν, β) = (lζeh)

1/2 1

2s+1

s∑
j=0

(
s

j

)
[Js+1−δ−2j (χeh) − Js−1−δ−2j (χeh)] (4.7)

where

χeh = ζeh

2ν
(1 − 1

4β2) with ζeh, ν andβ � 1 and with

(
s

j

)
= s!

j !(s − j)!

and where the latter are the binomial coefficients.

The expressions (4.4)–(4.7) define the coefficient of thel-photon interband absorption
in the presence of the uniform electric and magnetic fields parallel to the SL direction.
With a weak oscillating electric fieldF0 (i.e. β → 0), only the one-photon (l = 1, s = 0)
absorption (4.4) is large. In this case, the matrix element (4.6) becomesM

(1)
δ = J−δ(χeh),

and the coefficientαl from (4.4) tends to the previous results for the one-photon absorption
[13, 16].

From equations (4.4) and (4.5), we see that thel-photon absorption spectrum consists
of a superposition of the Stark ladders formed by theδ-function-type resonances labelled
by the indexδ. Their oscillator strengths are governed by the matrix elementsM

(l)
δ . The

ladder formed by the Landau levels labelled by the indexN is associated with each Stark
resonance.

The matrix elementsM(l)
δ consist of Bessel functions. Their argument depends upon the

value of the factorζeh/ν. For arbitrary values ofζeh/ν > 1, the transitions with different
δ contribute almost equally to the absorption spectrum (4.5). Interband transitions between
any pair of Stark levels(σ → σ ′) and between any wells are possible. In this case, the
multi-photon absorption spectrum consists of the complex superposition of the Stark ladders,
each of which consists of a large number of resonances of nearly equally intensity. These
interband transitions between the extended states of carriers are the essence of the multi-
photon magneto-optical Franz–Keldysh effect in the superlattice [23]. Unfortunately, it is
unrealistic to investigate the details of this spectrum experimentally.

Let us consider the most attractive case for the localization of carriers caused by an
uniform electric fieldE of sufficient strength such thatζeh/ν � 1. With such fields, the
magnitude of the argument of the Bessel functions in equations (4.6) and (4.7) becomes
χ � 1. Note also that an increase in the magnitude of the oscillating electric fieldF0 ∼ β

causesχeh to decrease. Under the localization condition,χeh � 1, and thus only the Bessel
functionJ0 (χeh) ≈ 1 contributes to the matrix elements (4.6) and (4.7) asJn(χeh) ∼ χn

eh � 1
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for n 6= 0. As a consequence, interband intense multi-photon transitions between a limited
number of Stark levels(σ → σ ′) and between a limited number of wells are possible. It
follows from (4.6) and (4.7) that, for the one-photon absorption (l = 1, s = 0), only the
vertical interwell transitions withδ = 0 (σ → σ ′) are allowed. For two- (l = 2, s = 0) and
three-photon absorption (l = 3, s = 1), non-vertical transitions withδ = ±1 are possible.
As a result, under the localization condition the multi-photon absorption spectrum will be
formed by the Stark ladders each of which consists of a limited number (one forl = 1,
two for l = 2, 3, . . . etc) of intense resonances. Optical transitions occurring between the
localized states of a single quantum well cause the multi-photon magneto-optical Wannier–
Stark effect. It is apparent that such an experimental spectrum is more readily available for
study.

4.2. Commensurate Stark and cyclotron frequencies

Let us consider the most attractive case when the Stark(ωE) and cyclotron(ωB) frequencies
are taken to be commensurate. This means thatωB/ωE = p/q wherep andq are integers
having no common divisors. Under this condition, certain of the Landau levels associated
with different Stark levels coincide and an enhancement of the relevant resonances occur.
Under this commensurate condition, expression (4.5) becomes

3l(ω) = q

h̄ωE

∞∑
N=0

+∞∑
δ=−∞

|M(l)
δ |2δ

(
q

lh̄ω − Ēg

h̄ωE

− (qδ + pN)

)
. (4.8)

From (4.8), it follows that the absorption spectrum consists ofδ-function-type resonances
with frequenciesωn given by

lh̄ωn − Ēg

h̄ωE

= n

q
wheren = qδ + pN. (4.9)

The intensity of the resonance positioned atωn is defined by the sum of the intensities
|M(l)

δ |2 with different indexesδ and N corresponding to the fixed numbern. Under the
localization condition, the allowed values ofδ are limited by the numberl of photons
involved. As a result, and in contrast to the case of a weak uniform electric fieldE [13],
the distance between the neighbouring values ofn is not universally equal to one unit and
the resonances are not equally spaced but have a separation of ¯hωE/q.

4.3. The form of the spectrum

We consider in turn the most commonly studied experimental absorption spectra involving
one, two and three photons.

4.3.1. One-photon absorption (l =1, s =0).As the transitions withδ = 0 are allowed, there
is no superposition of the Landau ladders associated with different Stark transitions. As
noted in [14] under the localization condition, the predicted enhancement of the one-photon
absorption of the weak optical wave generated by the crossing Landau levels [13] cannot
be tested.

4.3.2. Two- (l = 2, s = 0) and three-photon (l = 3, s = 1) absorption.For these numbers
of photons, the transitions withδ = ±1 are possible. From (4.9), it follows that, for two
Landau levels associated with the Stark transitions for whichδ = ±1 and which cross, their
indicesN+,− must satisfy the condition

n = q + pN+ = −q + pN− with N+,− = 0, 1, 2, . . . . (4.10)
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Figure 1. The relative oscillator strengths3l of the two- (l = 2) and three-photon(l = 3)

separate magneto-electro-absorption spectra associated with the Stark transitionsδ = +1 and
δ = −1 and the superimposed spectra(δ = ±1) versus

s = lh̄ωn − Ēg

h̄ωE
for (a) ωB/ωE = 1/2 and (b)ωB/ωE = 2/1.

From (4.8), the oscillator strength of the resonance positioned atωn is proportional to3l(ωn)

which is given by

3l(ωn) ∼
∞∑

N+,−=0

∑
δ=±1

|M(l)
δ |2 (4.11)

where

M
(3)

±1 = (2ζeh)
−1/2M

(2)

±1 = 1
2. (4.12)

The intensities of the crossed enhanced resonances are doubled compared to those seen in
the single spectra.
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Using the expressions (4.10), we obtain

N+ − N− = 2q/p (4.13)

for the relationship betweenN+ and N−. As (N+ − N−) is an integer, thenp = 1, 2.
Moreover, if p = 1 and q = 2, then enhanced resonances occur at positionsωn for
n = 2, 3, 4, . . . whereas the four normal resonances are defined by the indices−2 6 n 6 1.
Alternatively, ifp = 2 andq = 1, then enhanced resonances occur atωn with n = 1, 3, 5, . . .

whereas only the one resonance at the positionω−1 is not enhanced. The shapes of the
relevant electro-magneto-absorption spectra, which are the same forl = 2 and l = 3, are
depicted in figure 1.

In contrast to the one-photon absorption of the weak wave, the predicted enhancement
of the absorption [13] could be detected in principle in the multi-photon magneto-optical
Wannier–Stark spectra. As the electron–hole interaction and valence-band mixing prevent
the crossing of the levels [14, 15], then superlattices without these effects are favoured
experimentally. In the case of a marked exciton contribution, the infrared shift of
the resonances can come into being and ‘crossing’ turns into ‘anticrossing’ [24]. The
anticrossing of the Wannier–Stark interacting states associated with different superlattice
sub-bands must always be kept in mind [25]. The reason is that the ‘anticrossing’ mentioned
above occurs in cases of both a Faraday [14, 15] and a Voigt geometry (forη parallel to
Oz) for the optical wave considered here.

On considering possible experiments, estimates of suitable values for the parameters for
the GaAs/Ga1−xAl xAs superlattice system (withx = 0.35) may be made for the case when
the complex valence band formed by the subbands associated with light (l) and heavy (h)
holes. For such a structure, the total width of the minibands is given by(1e+1lh) = 0.14 eV
and(1e + 1hh) = 0.094 eV [21]. With an electric fieldE = 5× 107 V m−1, the parameter
χeh is such that, for electrons and heavy holes,χe,hh = 0.941 and for electrons and light
holesχe,lh = 1.42. With such an electric field, the heavy holes are almost totally localized.
By increasing the electric fieldE, first the light holes and then the electrons will become
localized as the localization conditionχeh � 1 is reached in the experiment.

5. Conclusion

In summary, we have developed an analytical approach to the problem of calculating of the
multi-photon interband absorption spectrum in the presence of uniform electric and magnetic
fields which are directed parallel to the oscillating electric field of the optical wave and the
superlattice axis. The uniform electric field is regarded as having sufficient strength so that
the carriers are localized. The electron–hole cyclotron frequency and frequency of the Stark
oscillations are taken to be commensurate. It has been shown that, under these conditions
and in contrast to the one-photon spectrum, an enhancement of the series of the resonances
occurs in principle. However, it is clear that the form of the spectrum depends on the
relationship between the cyclotron and Stark frequencies and on the number of photons
involved.
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